There’s a weird asteroid shaped like a bone whipping around our sun

Astronomers have gotten their closest look yet at an unusually shaped asteroid orbiting the sun in the asteroid belt located between the orbits of Jupiter and Mars.

The strange asteroid, named Kleopatra, was recently imaged in the most detail to date using the European Southern Observatory’s Very Large Telescope (VLT). The image below shows the asteroid from different angles, revealing its two lobes linked by a center portion with an overall shape like a bone.

These eleven images are of the asteroid Kleopatra, viewed at different angles as it rotates. The images were taken at different times between 2017 and 2019 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s VLT. Kleopatra orbits the Sun in the Asteroid Belt between Mars and Jupiter. Astronomers have called it a “dog-bone asteroid” ever since radar observations around 20 years ago revealed it has two lobes connected by a thick “neck”. ESO/Vernazza, Marchis et al./MISTRAL algorithm (ONERA/CNRS)

“Kleopatra is truly a unique body in our Solar System,” said the lead author of a new study on the asteroid, Franck Marchis, an astronomer at the SETI Institute. “Science makes a lot of progress thanks to the study of weird outliers. I think Kleopatra is one of those and understanding this complex, multiple-asteroid system can help us learn more about our Solar System.”

To understand the shape of Kleopatra, the researchers used the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on the VLT to capture it from different angles and then created a 3D model of its shape. They noticed that one lobe is rather larger than the other, and in total its length is around 170 miles.

Another interesting tidbit about this asteroid is that it has two moons orbiting it. Their orbits are complex due to the asteroid’s odd shape, but with those modeled the researchers could use this information to calculate the asteroid’s mass, which turned out to be considerably less than previously estimated.

Future studies of Kleopatra will use the upcoming Extremely Large Telescope (ELT) to look at it in even more detail. The adaptive optics system of this new telescope will use a deformed mirror to lessen the distortion caused by the atmosphere, allowing it to see distant objects like the asteroid in sharper focus.

“I can’t wait to point the ELT at Kleopatra, to see if there are more moons and refine their orbits to detect small changes,” said Marchis.

The research is published in the journal Astronomy & Astrophysics.

Editors’ Recommendations





Go to Source