What is 5G? Everything you need to know

It’s been nearly a decade in the making, and 5G is now a reality. Wireless carriers started rolling out 5G to select cities a few years ago, and mobile 5G internet access is now relatively widely available, depending on your phone plan. But what is 5G exactly?

It may seem as though there are more questions about 5G than there are answers. Some wonder where 5G is available, and if they’ll ever see it in their city, while others are more interested in which 5G phone they should buy. And of course, there is a debate about which carrier will have the best 5G phone plan.

You have questions about the latest mobile network, we have answers. Here’s everything you need to know about 5G tech in March 2021.

What is 5G technology?

Before we explain how 5G works, it’s probably a good idea to explain what 5G is. There are a lot of specifics, which we talk about later in this post, but here’s a quick primer.

Simply put, 5G is the 5th generation of mobile broadband that will eventually replace, or at least augment, your 4G LTE connection. With 5G, you get exponentially faster download and upload speeds. Latency, or the time it takes devices to communicate with wireless networks, will also drastically decrease.

How does 5G technology work?

Now that we know what 5G technology is, it’s a good idea to understand how it works since it’s different from traditional 4G LTE. First, let’s talk 5G spectrum.


Just like 4G LTE, 5G technology operates on a wide range of radio spectrum allotments but is capable of running on a wider range than current networks. The most common form of 5G being used is Sub-6, and there is also mmWave.

Sub-6 refers to 5G that operates at a frequency below 6GHz. All carriers have some form of Sub-6 network, primarily because 4G LTE currently runs on these lower frequencies. For example, T-Mobile has its low-band 600MHz spectrum and its previously Sprint-owned 2.5GHz both in use for 5G.

Sub-6 spectrum is incredibly important in the rollout of 5G, because of the fact that these lower-frequency radio waves can travel long distances and penetrate walls and obstacles. That means that carriers can deploy much larger networks without having to build hundreds of cells in every city.

Then there’s mmWave (millimeter wave), which refers to the ultra-high-frequency radio waves, between 30Ghz and 300Ghz, that are used to supercharge 5G connections and deliver download speeds of multiple gigabits per second. Early on, Verizon relied exclusively on mmWave for its 5G network, though the carrier has now started deploying Sub-6 networks too. While mmWave connections can deliver superfast download speeds, the high-frequency radio waves can’t travel long distances and can’t really get through obstacles — for the most part, even a window or leaves of a tree can block the connection.

That means to make a robust mmWave network, carriers need hundreds, or thousands, of small network cells in every city. Essentially, mmWave network deployment often comes down to having to build little networks around every corner of a building. So why bother? Well, mmWave can handle an incredible amount of data, and an incredible number of users simultaneously. That makes it better for densely populated cities, as well as places like stadiums and arenas.

All of the major carriers are deploying mmWave networks, but to date, those superfast connections are limited to a few downtown areas in major cities. It’s expected that mmWave networks will get more robust, but only time will tell how long that actually takes.

How fast is 5G? A Guide to 5G Speeds

Clearly, 5G is faster than 4G, but by how much? The standards for telecommunications technologies, developed by 3GPP, are somewhat complex, but here’s a general rundown of how fast 5G is:

  • Peak data rate: 5G will offer significantly faster data speeds. Peak data rates can hit 20Gbps downlink and 10Gbps uplink per mobile base station. Mind you, that’s not the speed you’d experience with 5G (unless you have a dedicated connection) — it’s the speed shared by all users on the cell, and even then, it’s high.
  • Real-world 5G speed: While the peak data rates sound pretty impressive, actual speeds won’t be the same. The spec calls for user download speeds of 100Mbps and upload speeds of 50Mbps.
  • Latency: Latency, the time it takes data to travel from one point to another, should be at 4 milliseconds in ideal circumstances, and at 1 millisecond for use cases that demand the utmost speed. Think self-driving car-collision systems.
  • Efficiency: Radio interfaces should be energy efficient when in use, and drop into low-energy mode when not in use. Ideally, a radio should be able to switch into a low-energy state within 10 milliseconds when no longer in use.
  • Spectral efficiency: Spectral efficiency is “the optimized use of spectrum or bandwidth so that the maximum amount of data can be transmitted with the fewest transmission errors.” It’s expected that 5G should have a slightly improved spectral efficiency over LTE, coming in at 30bits/Hz downlink and 15 bits/Hz uplink.
  • Mobility: With 5G, base stations should support movement from 0 to 310 mph. This means the base station should work across a range of antenna movements — even on a high-speed train. While it’s easily done on LTE networks, such mobility can be a challenge on new mmWave networks.
  • Connection density: In terms of connection density, 5G should be able to support many more connected devices than 4G LTE. The standard states 5G should be able to support 1 million connected devices per square kilometer. That’s a huge number, which takes into account the slew of connected devices that will power the Internet of Things (IoT).

In the real world, actual 5G speeds will vary widely. Eventually, Sub-6 networks should be able to deliver speeds of multiple hundreds of gigabits per second, but for now, connections can be anywhere from 50Mbps to 400Mbps.

Real-world mmWave speeds are a little harder to pin down, since mmWave is scarcely available in the real world. If you do happen to find yourself on a mmWave network, you may be able to achieve speeds of up to 4Gbps. That’s many times faster than the fastest 4G LTE networks, but again, those connections are sparse, and widespread availability of them is a long way off.

In many areas, 5G internet is just as slow, or sometimes slower, than 4G LTE. That’s usually due to limited spectrum availability, as carriers try to use one chunk of radio waves to support current 4G networks and new 5G networks simultaneously. Those 5G speeds should improve as more devices are moved over to 5G and carriers start to change the allocation. You can use these 5G apps to test your connection.

Where is 5G coverage available now?

So, when should you expect to have a 5G infrastructure in your neighborhood? Well, if you live in a relatively populated area, at least one of the major carriers likely already offers 5G. T-Mobile, AT&T, and Verizon have all rolled out their so-called “nationwide” networks, using Sub-6 5G.

All of the major U.S. carriers are working furiously to build out 5G networks, yet deployment across the entire country will nonetheless take several years.

It’s also worth noting that each 5G carrier has a different 5G rollout strategy. This means your 5G experience may vary greatly depending on your carrier. Here are all the details we currently have concerning each carrier’s deployment plans.


The Verizon 5G network is smaller than the likes of AT&T and T-Mobile, due largely to the fact that Verizon spent years building out its mmWave before it started work on Sub-6 technology for 5G deployment. That also means that Verizon offers a large number of mmWave small cells — though still not enough to provide a meaningful and reliable mmWave network that’s widespread.

Verizon 5G coverage map


AT&T was in the running as the first to offer any kind of 5G wireless technology in the U.S., but like Verizon, it relied heavily on mmWave in the early days — and as such its recently launched nationwide network is a little smaller than T-Mobile’s. Still, it is large enough to be considered “nationwide,” and the carrier will be expanding its AT&T 5G network over time.

It’s important to note that AT&T really wants you to think you’re always on 5G. If you don’t have a 5G-compatible phone, you may still get a little icon saying that you’re on “5GE,” but that’s not really 5G at all — it’s just AT&T’s new marketing name for 4G.

Go to Source